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Recent experiments show that the long looked for thermotropic biaxial nematic phase is
finally stabilized in a low mass liquid crystalline system. Inspired by this experimental
observation we concentrate on some theoretical issues concerned with this phase. In
particular we show that the simplest Lebwohl–Lasher biaxial model, as introduced by
Luckhurst and Romano, is consistent with the minimal coupling Landau–de Gennes
phenomenological approach. The model shows a rich spectrum of possibilities, in particular a
direct isotropic–biaxial nematic phase transition. A possible bridge between molecular and
phenomenological approaches, in particular an interpretation of the alignment tensor, is
discussed.

1. Introduction

The simplest of the orientationally ordered liquid

crystalline phases are uniaxial and biaxial nematics

[1–3]. In both phases no long range positional order is
present, as in the isotropic liquid (I), but molecules lie,

on average, parallel to each other. This preferred

direction, the director, is often denoted by a unit vector

n̂. The directions n̂ and {n̂ are equivalent as no long

range ferroelectric order is found in nematics.

In many cases there exists a rotational symmetry

about n̂. The corresponding liquid crystalline phase is
then called a uniaxial nematic (NU). Two uniaxial

nematic phases can be distinguished: one of them,

denoted NU+, is formed from prolate-like molecules.

Molecules that are, on average, oblate in shape usually

stabilize the NU2 phase. Both, NU+ and NU2 are of D?h

point-group symmetry.

But nematogenic molecules do not possess cylindrical

symmetry, sometimes have appreciable dipole moments
and very often are characterized by a considerable

degree of flexibility. When this deviation from the

uniaxial symmetry becomes relevant, new phases, with

non-uniaxial one-particle distribution, may form. The

corresponding nematic phase is then called biaxial and

denoted NB.

For biaxial nematics a second director m̂, orthogonal
to n̂ must be introduced. This means that in the

NB phase an orthonormal, right-handed tripod

{l̂~m̂|n̂, m̂, n̂} of the directors characterizes the

symmetry of the phase. To date no long range polar

order has been detected in the biaxial nematic phase.

Consequently, one expects that l̂ and { l̂, m̂ and {m̂ and

n̂ and {n̂ directions are equivalent, which means that the

NB phase is a structure of D2h point-group symmetry.

Experimentally the biaxial nematic phase was dis-

covered by Yu and Saupe [4] in a lyotropic system in

1980 and later in polymeric systems [5]. Generally, first

and second order phase transitions are observed

experimentally between the isotropic phase and differ-

ent nematic phases and between the nematic phases.

Since 1986 there have been many attempts to find the

NB phase in low molar mass thermotropic materials (for

a comprehensive review see [6, 7]), but only recent

experiments on ‘boomerang-shaped’ oxadiazole meso-

genic compounds [8–11] and on liquid crystalline

organo-siloxane tetrapodes [12] seem finally to provide

evidence of thermodynamically stable thermotropic

biaxial nematic behaviour. This discovery raises an

interesting question as to what mechanism is likely to be

responsible for the enhanced stability of the biaxial

ordering in these systems. That this mechanism may

differ from what we know for lyotropic systems is

suggested, for example, by a strong central dipole

moment associated with the oxadiazole group of the

boomerang molecules. One possible scenario might be

that the second director in these systems is actually a

polar vector. However, in what follows we are not going

to discuss this possibility.

The (non-polar) biaxial nematic phase was predicted

theoretically by Freiser in 1970 [13, 14], long before the*Corresponding author. Email: longa@th.if.uj.edu.pl
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first experimental evidence became available. Since that

time, the possible effects of deviations from cylindrical

symmetry on nematic order have been studied theore-

tically, both at phenomenological and molecular levels.

More specifically, the Landau–de Gennes approach

[2, 3, 15, 16] allowed for a systematic account of D2h

symmetry and classification of possible topologies of

phase diagrams with the NB phase. Molecular field

(MF) [13, 14, 17–24] as well as simulation studies

[25–31], have shown that molecules possessing D2h

symmetry and interacting by appropriately chosen pair

potentials, like biaxial extensions of a single site Gay–

Berne potential [29–31], figure 1, can produce the

biaxial nematic phase. Similar conclusions have

emerged from the studies of ensembles of hard biaxial

molecules [32–43].

In the majority of cases studied, the transitions

involving isotropic phase, and biaxial and uniaxial

nematic phases are found to belong to the class

schematically shown in figures 2 and 3. Only recently

a different scenario with a direct transition between

isotropic and biaxial nematic phases, figure 4, not being

reduced to a single Landau point, has also been

discussed [24, 44]. One of the interesting features of

the calculated phase diagram is the presence of a

tricritical point, separating uniaxial and biaxial nematic

phases.

In this paper we demonstrate that many properties of

the models of biaxial nematics discussed in the literature

can, in fact, be understood by referring to the generic,

Lebwohl–Lasher type of model as introduced by

Luckhurst and Romano (LR) [25] and recently re-

examined by Longa et al. [44]. In particular we show

that a slight generalization of the LR model is able to

reproduce the topology of phase diagrams as predicted

by the minimal coupling Landau–deGennes phenom-

enological approach. The model also clearly shows the

Figure 1. Tripods of vectors parameterizing molecular orien-
tations. The parametrization is sufficient to describe mutual
interactions between two rigid molecules and to characterize
single site potentials.

Figure 2. Generic phase diagrams with an isolated Landau
point as predicted by the expansion (4). Exemplary calcula-
tions are carried out for (c, d, f)5(0, 3, 12) and for (c, d, f)5(0,
0, 6) (inset).

Figure 3. Generic phase diagrams as predicted by the
expansion (4). They show phase transitions between uniaxial
nematic phases with and without (inset) an intermediate
biaxial nematic phase. Exemplary calculations are carried out
for (c, d, f)5(3, 3, 7) and for (c, d, f)5(3, 3, 6) (inset).
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sectors in the potential parameter space where the

biaxial nematic is most likely to become stable. When

the coupling constants of the LR model are interpreted

as coefficients of expansion of the direct pair correlation

function [44], the stability criterion of the NB phase with

respect to the I phase can be addressed in a thermo-

dynamically exact way, giving a bridge between density

functional theory and computer simulation. Finally, the

model can be used to illustrate how the phenomen-

ological alignment tensor can be calculated from

molecular theories.

2. Phenomenological theory of the biaxial nematic

phase

The biaxial nematic phase can be described in the

language of Landau–Ginzburg phenomenological the-

ory of phase transitions, where orientational properties

of liquid crystals are quantified in terms of a

symmetric and traceless alignment tensor Qab:

Qab5Qba, Tr Q50. The anisotropic part of the dielectric

(diamagnetic) susceptibility is an example of experi-

mentally realized Q. In a standard parametrization Q

can be written as

Q~S n̂6n̂{
1

3
1

� �
zP m̂6m̂{

1

3
1

� �
ð1Þ

~
2S{Pð Þffiffiffi

6
p 1ffiffiffi

6
p 3n̂6n̂{1Þ
� �

{
Pffiffiffi
2
p 1ffiffiffi

2
p l̂6l̂{m̂6m̂
� �� �

2ð Þ
�

where {l̂~m̂|n̂, m̂, n̂} are orthonormal eigenvectors of

Q (see Introduction) corresponding to the eigenvalues

{ 1
3

S{ 1
3

P, 2
3

S{ 1
3

P, { 1
3

Sz 2
3

P, respectively. The

eigenvector of Q corresponding to the maximal

modulus of a non-degenerate eigenvalue, defines the

director of the system.

The isotropic state corresponds to the case when all

three eigenvalues of Q vanish, which yields Q;0. For

the D?h�symmetric uniaxial states two out of the three

eigenvalues of Q are equal, i.e. S?0, P50 or S50, P?0

or S5P. These conditions could be written in a

coordinate-independent form as one condition: w251,

where

w~

ffiffiffi
6
p

Tr Q3

Tr Q2
� 	3

2

, w2
ƒ1: ð3Þ

In the general case, Q has three different real eigen-

values that account locally for the D2h�symmetric

biaxial state of w2,1. Maximal phase biaxiality is

reached for w50. Also note that for uniaxial Q-tensors

a transformation û? Qab{cdab

� 	
uaub


 �
, where c is an

arbitrary constant making the bilinear form […]

positive-definite, transforms a unit sphere û
�� ��~1 into

an axially symmetric, prolate (w51) or oblate (w521)

closed surface. Hence, w51 and w521 cases corre-

spond to NU+ and NU2, respectively.

Although the representation (1) is commonly used in

the phenomenological description of biaxial nematics,

actually, from a symmetry point of view, a more

appropriate parametrization is that given by equa-

tion (2) (see Appendix). The tensors in square brackets

of (2) are the irreducible (with respect to the D2h

symmetry) parts of Q. In the Appendix they are denoted

T
2ð Þ

0 and T
2ð Þ

2 , respectively, with T
2ð Þ

0 representing purely

uniaxial contribution of maximal uniaxiality (w51) and

T
2ð Þ

2 being purely biaxial of maximal biaxiality (w50).

Importantly, the tensors T
2ð Þ

0 and T
2ð Þ

2 are orthogonal (in

the sense of taking Tr), which means that for appro-

priately chosen parameters in the Landau expansion the

biaxial nematic can be stabilized with the vanishing T
2ð Þ

0

part. This, in turn, implies that both the I–NB and the

NU–NB phase transitions can be either first or second

order. In other words we may expect tricritical points

between I–NB and NU–NB and Landau points, depend-

ing on details of the free energy expansion.

More specifically, thermodynamic properties of the

system can be found from a non-equilibrium free

energy, which is constructed as an SO 3ð Þ�symmetric

expansion in powers of Q. The only restriction on

the expansion is that it must be stable against an

unlimited growth of the order parameter. In the absence

of electric and magnetic fields, the minimal coupling

expansion describing the biaxial phase reads (see, e.g.,

[2, 3])

F~Foza Tr Q2{b Tr Q3zc Tr Q2
� 	2

zd Tr Q2
� 	

Tr Q3
� 	

ze Tr Q2
� 	3

z f {6eð ÞTr Q3
� 	2

4ð Þ

~aq2{
b{dq2
� 	

wq3ffiffiffi
6
p zcq4z ez

f

6
{e

� �
w2

� �
q6: 5ð Þ

The notation in equation (4) is as follows: Fo is the

(unknown and usually disregarded) free energy of

the reference isotropic phase, a5ao(T2T*) where T is

the temperature, T* is the spinodal for a first order

phase transition from the isotropic phase to the nematic

phase or transition temperature otherwise, ao.0, and

e.0, f.0 for stability of the expansion. Out of six

parameters only four are relevant. We take e51 and

investigate dependence of the phase diagram in the (a,

b)-plane on the sign of f26e. Owing to the inequality

21(w(1 and utilizing the parametrization: Tr Q25q2,

Tr Q3~ q3wffiffi
6
p the expansion (4) can be written down in an

equivalent form (5), which allows a simple minimization

of F over w and q>0.
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Generally, a stable biaxial nematic phase is found for

f26e.0. The phase diagrams could be divided into

many distinct classes, some of them being shown in

figures 2–4.{

(a) Diagrams with a line of first order I«NU+ phase

transitions (b.0) and a line of first order I«NU2

phase transitions (b,0). The lines terminate at the

Landau point a5b50. Line b50 (inset in figure 2)

corresponds to a degenerated biaxial phase of

maximal biaxiality (w50).

(b) Diagrams as in (a) but with an additional first

order phase transition between the two uniaxial

nematic phases. If both phases are characterized by

the same sign of the w parameter (3) the transition

between them terminates at a critical point. An

example of the NU+«NU2 line of first order phase

transitions is shown as an inset in figure 3. The line

is positioned between the I«NU2 and I«NU+
lines. All three lines meet at the I«NU+«NU2

triple point.

(c) Diagrams as in (a,b) but with the line separating

NU+ and NU2 split into two lines: NU+«NB and

NU2«NB. Generally this topology is found for

c>0. Phase transition between the uniaxial and the

biaxial nematic phases can be either first or second

order and the line NU¡«NB can have a tricritical

point. Also the line I«NB can have a tricritical

point. At the Landau point four phases meet:

I«NU+«NB«NU2 (figures 2 and 3).

(d) Diagrams as in (c) but with the Landau point split

into two triple points, figure 4: I«NU+«NB and

I«NU2«NB. The two points are connected by a

direct I«NB line of first order phase transitions.

This topology is observed for c,0.

Now we show that the above mentioned phenomen-

ological phase diagrams can be recovered from a model

which is a slight generalization of that proposed by

Luckhurst and Romano [25]. Although we restrict

ourselves to mean-field analysis it will become clear

from the presentation that many predictions are in fact

mean-field-independent. In particular, a connection

between molecular order parameters and Q, which we

shall discuss, is of such general nature.

3. Luckhurst-Romano model of biaxial ordering

Following Luckhurst and Romano [25] we consider a

regular lattice of biaxial, D2h-symmetric particles inter-

acting through a pairwise additive interaction

V~{ v00j j s0D
2ð Þ

0,0
~V
� 	

zv0 D
2ð Þ

2,0
~V
� 	

zD
2ð Þ

0,2
~V
� 	h i

zv2D
2ð Þ

2,2
~V
� 	n o

6ð Þ

~{ v00j j s0L0
:B0zv0 L2

:B0zL0
:B2½ �zv2L2

:B2f g 7ð Þ

~{ v00j j v2{
ffiffiffi
3
p

v0

� �
b1
:l1ð Þ2z v2z

ffiffiffi
3
p

v0

� �
b2
:l2ð Þ2z

�

3

2
s0{

v2

2

� �
b3
:l3ð Þ2{ s0zv2

2

�
8ð Þ

where s05sign (v00). A direct connection between equa-

tion (6) and the case studied by LR [25], also referred to

as a dispersion model [44], is established if we set:

s0~1, v0~+
ffiffiffi
2
p

l, v2~2l2: ð9Þ

In this special, but important, case describing point

dispersive interactions the parameters v00 and l can be

directly expressed in terms of the diagonal elements of

the molecular polarizability tensor, a, in which case they

read [28]

l~
3

2

� �1
2 axx{ayy

2azz{ axx{ayy

� 	 ð10Þ

v00~ 2azz{ axx{ayy

� 	
 �2
: ð11Þ

Figure 4. Generic phase diagram with a line of phase
transitions between isotropic and biaxial nematic phases as
predicted by the expansion (4). Exemplary calculations are
carried out for (c, d, f)5(21, 0, 12).

ð6Þ

ð7Þ

ð8Þ

1 Note that to a given phase diagram its mirror image diagram
with respect to the b50 line could be generated by a reversal of
sign of the parameters in the Landau expansion that multiply
terms with odd powers of Tr Q3. Additionally NU¡ should be
replaced by NU+in the mirror image diagrams:
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Going beyond point dispersive forces makes the

parameters {s0, v0, v2} no longer related via the

geometric mean rule (9).

The pair interaction (6) is written down in three

equivalent forms, each having an advantage depending

on the specific calculations being carried out. More

specifically, the representation (6) gives the potential in

terms of the symmetry-adapted functions D Lð Þ
m,n

~
V
� 	

[34,

45], which are orthogonal, D2h-symmetrized linear

combinations of Wigner rotation functions D Lð Þ
m,n

~
V
� 	

.

Here
~
V denotes the set of Euler angles defining the

intermolecular rotation transforming molecule-fixed

orthonormal coordinate system {b1, b2, b3} into {l1, l2,

l3}, figure 1, and the expansion is complete up to L52

terms. The representation in terms of D Lð Þ
m,n is particularly

useful for density functional and bifurcation theories as

it allows one to use the orthogonality properties of Ds

[34, 44], which enormously simplify the calculations.

In formula (7) the symmetry-adapted functions

D Lð Þ
m,n

~
V
� 	

are given in an equivalent Cartesian form as

a linear combination of full contractions of irreducible

Cartesian tensors over Cartesian indices. The form of

the interaction potential, equation (7), proves very

convenient for discussion of a connection between

density functional approach and Landau expansion.

The relevant tensors D 2ð Þ
m,n

~
V
� 	

, Lm and Bm are given in

the Appendix.

The most appealing form of the potential is that given

in terms of scalar products between orthonormal

triplets of vectors, equation (8) (see also figure 1). It

clearly displays the symmetry of the interaction and the

meaning of the coupling constants. Also it shows the

permutation symmetry of the interaction, which yields a

non-trivial duality transformation between prolate and

oblate states at various temperatures [44]. Exploring the

duality considerably reduces the relevant parameter

space of the model, which shrinks to the shaded region

of figure 5. It is sufficient to study phase diagrams for

the parameters taken from that area. They correspond

to states of predominantly prolate symmetry while the

image states (white region of figure 5) are of predomi-

nantly oblate symmetry. The self-dual line separating

the regions is thus the line of the Landau points. As the

duality represents a geometrical property of the model

the line of the Landau points is independent of the way

in which the phase diagram is calculated. It terminates

at the point of coordinates (0, 1), represented by a dot in

figure 5, where all coefficients in equation (8) are equal.

The line of points (0, v2:v2.1) corresponds to a direct I–

B bifurcation, which also seems to be the exact property

of the model. Details are published elsewhere [44].

Now we concentrate our discussion on further

properties of the model, in particular we find its

mesoscopic Q-tensor. It transpires that the form of

equations we shall study will be insensitive to the

perturbation (density functional) scheme used in calcu-

lations. However, for the sake of clarity, we carry out

exemplary calculations using a simple mean-field model.

More specifically, we consider a system formed by a

lattice of N identical particles interacting with the

potential V. The total potential energy, U, is given by

the sum of pairwise contributions, where the summation

runs over nearest neighbours on the lattice. We

approximate the configurational part, F , of the free

energy of the system by its mean-field value. It amounts

in replacing Xa by XazdXa X~B, Lð Þ, and disregarding

fluctuation terms dLadBb, where dXa~Xa{Xa and

where Xa is the thermodynamic average of Xa. After

simple algebra the final expression for F reads:

f ~
F

NkB v00j jd
~

1

2
s0 D

2ð Þ
0,0

2

zD
2ð Þ

2,0

2
� �

zv2 D
2ð Þ

2,2

2

zD
2ð Þ

0,2

2
� ��

z2v0 D
2ð Þ

0,0D
2ð Þ

0,2zD
2ð Þ

2,2D
2ð Þ

2,0

� ��
{t ln Zð Þ

ð12Þ

Figure 5. Relevant parameter space (grey area) for the model
(6). Prolate states (grey area) are separated by the line
v2~s0{

2 v0ffiffi
3
p of Landau points from oblate states (white area).

The thick vertical line represents points where a direct
isotropic biaxial nematic phase transition is predicted. The
thin line within the grey area represents parameters where a
tricritical point between uniaxial and biaxial phases is found
within mean-field calculations (adapted from [44]).
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where

Z~

ð
da d cos bð Þdc exp

1

t
s0D

2ð Þ
0,0zv0D

2ð Þ
0,2

� �
D

2ð Þ
0,0 Vð Þ

h


z v0D
2ð Þ

0,0zv2D
2ð Þ

0,2

� �
D

2ð Þ
0,2 Vð Þ

z s0D
2ð Þ

2,0zv0D
2ð Þ

2,2

� �
D

2ð Þ
2,0 Vð Þz v0D

2ð Þ
2,0zv2D

2ð Þ
2,2

� �
D

2ð Þ
2,2 Vð Þ

i�
ð13Þ

and where t5kBT/|v00|d is the dimensionless tempera-

ture. V represents the Euler angles {a, b, c}. For models

with particles not restricted to a lattice the parameters

v00, v0 and v2 are obtained from an averaging over

translational degrees of freedom and the lattice coordi-

nation number, d, becomes the average density of the

system. Minimization of equation (12) with respect to

the average values of the order parameters D 2ð Þ
m,n gives the

ordinary mean-field self-consistent equations, which

could be analysed, e.g. with the help of bifurcation

theory [34, 46–48]. Following this method [46–48] we

Taylor expand equation (12) about the isotropic phase

(D 2ð Þ
m,n&0) and convert it to the Landau expansion (4).

This allows one not only to find the bifurcation point

from the isotropic phase to an ordered phase, but also

gives a molecular interpretation of the alignment tensor

Q.

We start with the expansion of the equation (12) up to

a quadratic order in D 2ð Þ
m,n. It reads

f2~
1

2 t
t v2{

v2
0

5
{

v2
2

5

� �
D2

2,2

2

zD2
0,2

2
� ��

z 2 t v0{
2 s0 v0

5
{

2 v0 v2

5

� �
|

D2
2,2D

2
2,0zD2

0,0D
2
0,2

� �
z t s0{

1

5
{

v2
0

5

� �
D2

2,0

2

zD2
0,0

2
� ��

:

ð14Þ

The phase transition is driven by the order parameter

combination corresponding to the largest temperature,

t*, at which the expansion (14) becomes unstable.

Performing diagonalization of (14), t* can be deter-
mined explicitly in terms of the expansion coefficients.

This gives (compare with [34, 44])

t�~
1

10
s0zv2z s0{v2ð Þ2z4 v2

0

h i1
2


 �

~
1

10
s0zv2zwð Þ§0

ð15Þ

and

f2~
5

2
dt� y2

0zy2
1

� 	
z

t�
t��

� �
dt�� y2

2zy2
3

� 	� �
ð16Þ

where t**5t*2w/5, dta5t2ta, t5s02v2+w>0, 2w>t, and
where

y0~
tD2

0,0z2 v0D
2
0,2ffiffiffi

2
p ffiffiffi

t
p ffiffiffi

w
p , y1~

2w{tð ÞD2
2,2z2 v0D

2
2,0ffiffiffi

2
p ffiffiffi

w
p ffiffiffiffiffiffiffiffiffiffiffiffi

2w{t
p

y2~
{ 2w{tð ÞD2

0,0z2 v0D
2
0,2ffiffiffi

2
p ffiffiffi

w
p ffiffiffiffiffiffiffiffiffiffiffiffi

2w{t
p , y3~

{tD2
2,2z2 v0D

2
2,0ffiffiffi

2
p ffiffiffi

t
p ffiffiffi

w
p :

ð17Þ

We note that for w.0 the phase transition from I to

an ordered phase is driven by the first term in

equation (16), proportional to (y2
0zy2

1), while the

second term involves the secondary order parameter

(y2
2zy2

3) with the bifurcation temperature t**,t*.

Taking into account that D2
m,n is the component of Xn

in the director basis T
2ð Þ

m l̂, m̂, n̂
� �

(see the Appendix):

D2
m,n~T

2ð Þ
m l̂, m̂, n̂
� �

:Xn and observing relations (A8, A9)

we identify the Q-tensor (up to normalization) with a

linear combination of T
2ð Þ

0 and T
2ð Þ

2 weighted by y0 and

y2 terms, respectively. It reads

Q~y0T
2ð Þ

0 l̂, m̂, n̂
� �

zy1T
2ð Þ

2 l, m, nð Þ: ð18Þ

Note that all limiting cases known in the literature can
easily be recovered from (17). For example the Mayer–

Saupe model gives y0~D2
0,0, y15y25y350.

The components {y2, y3} introduce the secondary

alignment tensor (secondary order parameter), which
we denote R:

R~y2T
2ð Þ

0 l̂, m̂, n̂
� �

zy3T
2ð Þ

2 l, m, nð Þ: ð19Þ

As the bifurcation temperature associated with R is

lower than that of Q, the former tensor can be

eliminated in a systematic way from the Landau

expansion by performing a partial minimization of the
free energy [46–48] with respect to R for fixed Q. The

procedure allows one to express R in terms of Q with

the leading term being proportional to Q2:

R,Q2(1+…). Substituting R back in to the expansion

finally gives the Landau expansion about Q50,

expressed in terms of f(Tr (Q2), Tr (Q3)), which matches

precisely the phenomenological formula (4). The first

two terms read

f2~
5

2
dt� Tr Q2

� 	
{

25 t�
ffiffiffi
t
p

2t{3wð Þ
7
ffiffiffi
3
p

w
3
2

Tr Q3
� 	

z . . . : ð20Þ

Please note that the coefficient of the cubic invariant

(20) predicts the Landau points to fulfil the equation

2t53w, which is precisely the self-dual line v2~1{ 2v0ffiffi
3
p

shown in figure 5 [44].

In order to illustrate a connection between the

molecular parameters {y0, y1, y2, y3} (17) and the

tensors Q and R, we performed explicit mean-field
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calculations of {y0, y1, y2, y3} for the self-dual

dispersion case. That is, the model parameters chosen

were consistent with (9), where l~ 1ffiffi
6
p [28, 44]. At this

particular value the cubic term in the expansion (20)

vanishes, which yields a direct I–NB transition across

the Landau point. Results of numerical calculations are

shown in figures 6 and 7. The calculated phase

uniaxiality w, figure 7, of the tensors clearly shows that

Q remains (to within numerical error) maximally biaxial

down to t50. It is also clear as to why R is the

secondary order parameter. Interestingly, despite the

negative values of y2 and y3, the R-tensor is of prolate

symmetry.

4. Summary

In principle, a more general bifurcation analysis could

be carried out if, instead of expanding the pair potential

in symmetry-adapted basis functions, we would expand

the free energy functional expressed in terms of the

direct correlation functions [34, 44]. Interestingly, the

formulas (15–17) would still remain valid given that

molecules are D2h�symmetric. The formula (20) would

be an approximate one, with contributions coming from

the triplet direct correlations being disregarded.

The method provides a simple interpretation of the

alignment tensor in terms of molecular parameters and

shows how to distinguish between primary and second-

ary tensors. This is important, especially when a Landau

expansion based upon molecular order parameters is

constructed [15, 16]. We conclude that the analysis as

given offers a simple scheme with which to study the

stability of the biaxial ordering in model systems. The
direct phase transitions from the isotropic phase are

well captured by just the two effective parameters {v0,

v2} as the relevant information about I–(U,B) bifurca-

tion is contained in the expansion (6). Note also that

primary features of the phenomenological phase dia-

grams, figures 2–4, are recovered in the {v0, v2}

parameter space. In this sense the Luckhurst–Romano

model seems generic for the class of phase transitions
studied.
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Appendix: relevant symmetry-adapted irreducible tensors

vs directional cosines

Here we list all relevant D-functions of L52 and

irreducible Lm and Bm tensors. Also we give their

relation to directional cosines:

D
2ð Þ

0,0

~
V
� �

~L0
:B0~

1

4
z

3 cos 2
~
b

� �
4

~{
1

2
z

3

2
b3
:l3ð Þ2ðA1Þ

D
2ð Þ

0,2

~
V
� �

~L0
:B2~

ffiffiffi
3
p

2
cos 2~c
� 	

sin
~
b
� �2

~

ffiffiffi
3
p

2
b1
:l3ð Þ2{ b2

:l3ð Þ2
h i ðA2Þ

D
2ð Þ

2,0

~
V
� �

~L2
:B0~

ffiffiffi
3
p

2
cos 2 ~að Þsin

~
b
� �2

~

ffiffiffi
3
p

2
b3
:l1ð Þ2{ b3

:l2ð Þ2
h i ðA3Þ

D
2ð Þ

2,2

~
V
� �

~L2
:B2~

1

4
cos 2 ~að Þ 3zcos 2

~
b

� �h i
cos 2 ~cð Þ

{cos
~
b
� �

sin 2 ~að Þsin 2 ~cð Þ

~ b1
:l1ð Þ2z b2

:l2ð Þ2{ 1

2
b3
:l3ð Þ2{ 1

2

ðA4Þ

D
2ð Þ

2,0

~
V
� �

zD
2ð Þ

0,2

~
V
� �

~
ffiffiffi
3
p

b2
:l2ð Þ2{ b1

:l1ð Þ2
h i

ðA5Þ

where Lm~T
2ð Þ

m l1, l2, l3ð Þ, Bm~T
2ð Þ

m b1, b2, b3ð Þ. For

arbitrary right-handed orthonormal tripod { x̂, ŷ, ẑ}

the tensors T 2ð Þ
m x̂, ŷ, ẑÞ:T 2ð Þ

m

�
are

T
2ð Þ

0 ~
1ffiffiffi
6
p 3 ẑ6 ẑ{1
� 	

ðA6Þ

T
2ð Þ

2 ~
1ffiffiffi
2
p x̂6 x̂{f ŷ6ŷ
� 	

: ðA7Þ

Note that for L52 there are only two irreducible tensors

consistent with D2h symmetry: uniaxial T
2ð Þ

0 w~1ð Þ and

biaxial T
2ð Þ

2 of maximal biaxiality (w50). Using irredu-

cible basis and identifying { x̂, ŷ, ẑ} with { l̂, m̂, n̂} one
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can write the alignment tensor Q, equation (1), in an

equivalent form as

Q~q0T
2ð Þ

0 l̂, m̂, n̂
� �

zq2T
2ð Þ

2 l, m, nð Þ ðA8Þ

with

Tr Q2~q2
0zq2

2

Tr Q3~
q0 q2

0{3q2
2

� 	
ffiffiffi
6
p

ðA9Þ

where q0~
2S{Pð Þffiffi

6
p and q2~

{Pffiffi
2
p .
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